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Ballistic transport simulation in nanodevices, which involves self-consistently solving a coupled
Schrödinger-Poisson system of equations, is usually computationally intensive. Here, we propose coupling the
reduced basis method with the subband decomposition method to improve the overall efficiency of the simu-
lation. By exploiting a posteriori error estimation procedure and greedy sampling algorithm, we are able to
design an algorithm where the computational cost is reduced significantly. In addition, the computational cost
only grows marginally with the number of grid points in the confined direction.
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I. INTRODUCTION

As size of electronic devices shrinks to nanometer scale,
ballistic charge transport becomes increasingly important in
describing the transport phenomena in these devices.1 How-
ever, its simulation is usually computationally intensive—we
must self-consistently solve a coupled Schrödinger-Poisson
system of equations.2–4 Described in greater detail in Sec. II,
the iterative procedure involves repetitively solving a
Schrödinger equation with open boundary conditions2 at
many different energy states within each iteration. The large
number of states required to accurately determine the distri-
bution of the electron density and the number of self-
consistent iterations needed to achieve convergence lead to
the large computational cost usually associated with ballistic
charge transport simulation. A more efficient method to solve
the Schrödinger equation can thus greatly improve the over-
all efficiency of ballistic charge transport simulation. Note
that another popular approach to ballistic transport simula-
tion involves solving the nonequilibrium Green’s function
equations �NGEF�–Poisson system of equations.5,6 In this pa-
per, we will concentrate on the approach based on the
Schrödinger equation although the methodology we describe
can potentially be applied to the NGEF approach as well.

To solve the Schrödinger equation, the finite difference
method and the finite element method are the most widely
used methods due to their flexibility.3,4,7–9 However, a direct
application of these methods, especially in higher spatial di-
mensions, can lead to a large algebraic system of equations,
of which the solution is computationally expensive. The sub-
band decomposition method10,11 or more commonly known
as the coupled-mode approach5,12 attempts to reduce the
computational cost by decomposing the Schrödinger equa-
tion into two smaller subproblems, resulting in a bounded
Schrödinger equation in the confined directions and an open
Schrödinger equation in the transport direction. In particular,
by first solving the bounded Schrödinger equation at differ-
ent locations along the transport direction, we are able to
obtain a smaller algebraic system of equations for the open
Schrödinger equation, which can then be solved more effi-
ciently; the procedure is then effective in the limit where we
need to solve the Schrödinger equation at large number of
different energy levels. The efficiency can be further im-
proved by a WKB approximation of the open Schrödinger

equation.11 Nevertheless, solving the bounded Schrödinger
equation, which involves solving an eigenvalue problem at
different locations along the transport direction, can still be
potentially expensive, especially when strong confinement of
the electron demands a finely discretized simulation domain.
This paper proposes an efficient method based on the re-
duced basis approach to reduce the computational cost of
solving the bounded Schrödinger equation.

The reduced basis method is a model-order reduction
technique which exploits dimension reduction afforded by
the smooth and low-dimensional parametrically induced so-
lution manifold. Instead of using general basis sets such as
finite element, an approximation to a solution of an underly-
ing parametrized partial differential equation �PDE� is ob-
tained by a projection onto a finite and low-dimensional vec-
tor space spanned by a basis set consisting of solutions at a
number of judiciously selected parameter points. The re-
duced basis method was first introduced in the late 1970s in
the context of nonlinear structural analysis13,14 and subse-
quently abstracted, analyzed, and extended to a much larger
class of parametrized partial differential equations.15–19 In
the more recent past the reduced basis approach and in par-
ticular associated a posteriori error estimation procedures
have been successfully developed for many different types of
PDEs that are affine in the parameters,20–26 general nonaffine
PDEs,27,28 and linear eigenvalue problem.21,29 We will elabo-
rate further the methodology in Sec. III. In particular, we
extend the methodology described in Ref. 29 to eigenvalue
problem that is nonaffine in the parameter, and describe how
reduced basis methodology can be incorporated into the
overall solution procedure for the Schrödinger-Poisson sys-
tem of equations.

This paper is organized as follows. We first describe the
problem that we would like to solve. To simplify the presen-
tation of the methodology, we will use the double-gate metal-
oxide-semiconductor field-effect transistor �MOSFET� as a
model problem �Fig. 1�. We then provide the weak formula-
tion of the equations involved and briefly describe the sub-
band decomposition method. This serves as a platform for us
to describe the reduced basis method, and how it fits into the
overall solution procedure. We conclude with some numeri-
cal results and comparison to the subband decomposition
method. This paper utilizes atomic units for all quantities;
conversions between atomic units and some common units
for quantities relevant to this paper are listed in Appendix A.
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II. PROBLEM STATEMENT

With the effective-mass approximation,30 the electron is
described by a wave function ��E��H1����C2 which for a
given E, satisfies the following Schrödinger equation:

− � · � 1

2m�
� ��E�� + Veff�����E� − E��E� = 0, �1�

with appropriate open boundary conditions.2 The potential
Veff�L2��� is given by

Veff��� = − ���� + Vxc��� + Vb, �2�

where ��H1���, Vxc�H1��� and Vb�L2���. We ignore
the exchange-correlation term Vxc for simplicity but the
methodology described will easily accommodate the Vxc
term, and Vb describes the potential gap between the insula-
tor and the semiconductor. The potential � in turn satisfies a
Poisson equation given by

− � · �� � �� = − n��� + ND, �3�

with appropriate boundary conditions. Here, � is the dielec-
tric function of the materials, n��� is the density of free
electrons, and ND is the concentration of donor impurities;
we ignore contribution of hole and acceptor impurities for
simplicity. Equations �1� and �2� are thus coupled through the
term n���, which can be defined as

n��� = �
−�

�

g„E�k�…��„E�k�…�2dk , �4�

where g is the statistics of the electrons injected into the
device with energy E�k�, k is the wave vector, and E is a
function of k. A more complete definition, specific to the
model problem we intend to solve, is given by Eq. �17�.

To solve the above coupled system of equations, we will
use a fixed-point method. Starting from an initial guess n0,
we construct the sequence nk where nk is determined from
Eq. �4� with �k computed from Eq. �1� with Veff=�k+Vb. We
note that Eq. �4� must be evaluated numerically, and thus Eq.
�1� must be evaluated many times. We then solve Eq. �3� for
�k+1 with the new value of nk. The procedure is repeated
until 	�k−�k−1	L2

/ 	�k	L2
��tol, where �tol is our desired tol-

erance and 	 · 	L2
is the L2 norm. To improve the convergence

rate of the algorithm, we follow the suggestion in Ref.
6—we substitute Eq. �3� with the following nonlinear Pois-
son equation:

− � · �� � �k+1� + n3Df1/2��k+1 − Fn
k

T
� = ND, �5�

where n3D is the three-dimensional effective density of
states, f	 is the Fermi-Dirac integral of order 	, and Fn

k is the
quasi-Fermi level defined as

Fn
k = �k − Tf1/2

−1 � nk

n3D
� . �6�

For the purpose of this paper, we will consider a two-
dimensional nanodevice �a double-gate MOSFET� shown in
Fig. 1. Given a source potential VS, a drain potential VD, and
a gate potential VG, we would like to determine the current
flow I in the x1 direction. The simulation domain �

�0,a�
 �0,b��R2 can be further divided into five subdo-
mains denoted by �i, i=1, . . . ,5; �x1 ,x2� denotes a point in
�. The material properties we will be using is that of Si in
�1, �2 and �3, and SiO2 in �4 and �5. In addition, �2 and
�3 are doped to provide free carriers for the charge transport.
We assume the crystal structure of the device is oriented such
that x1 is in the �100� direction and x2 is in the �001� direc-
tion. The axes are then aligned with the principal axes of the
six equivalent ellipsoids of the conduction band. Based on
the effective-mass approximation, we then have three con-
figurations for m�
�m1

� ,m2
� ,m3

�� and

� · � 1

2m�
� �� =

�

�x1
� 1

2m1
�

�

�x1
�� +

�

�x2
� 1

2m2
�

�

�x2
��

+
�

�x3
� 1

2m3
�

�

�x3
�� .

The three configurations of m� are given by �ml ,mt ,mt�,
�mt ,ml ,mt�, and �mt ,mt ,ml�; mt and ml are the transverse and
longitudinal masses of the material. We assume mt and ml for
Si and SiO2 are the same. Finally, we assume we have a
two-dimensional electron gas with a parabolic dispersion re-
lation in the x3 direction.

A. Abstract formulation

We now derive the weak formulation for Eqs. �1� and �3�
for the model problem described in Sec. II. For Eq. �1�, the
weak formulation is as follows: given E�R, find ��Y

H1��� such that

1

2m1
��

�

��

�x1

�v�

�x1
+

1

2m2
��

�

��

�x2

�v�

�x2
+ �

�

�Veffv
� − E�

�

�v�

=
1

2m1
��

�S��D

��

�x1
v�, ∀ v � Y , �7�

where �S and �D are, respectively, the boundaries in contact
with source and drain electrodes. Based on the quantum
transmitting boundary method,2 we expand the right-hand
side of Eq. �7�: for g=S ,D,

VG

VG

VDVS Ω3Ω1

Ω4

Ω5

Ω2

FIG. 1. A model problem based on the double-gate
MOSFET.
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�
�g

��

�x1
v� = − 

m=1

Ng

i2am
g km

g�
�g

�m
g v�

+ 
m=1

Ng

ikm
g�

�g

�m
g v��

�g

�m
g �

− 
m=Ng+1

�

km
g�

�g

�m
g v��

�g

�m
g � , �8�

where �m
g ,Em

g �, 1�m�� are the eigenstates along �g; km
g

=�2m��E−Em
g �; Ng is the largest m for which E�Em

g , bm
g , 1

�m�Ng are the coefficients of outgoing traveling-wave
states, and bm

g , m�Ng are coefficients of the evanescent
states. For a particular problem, am

g is a parameter that we
can vary while bm

g and Ng are determined as part of the so-
lution.

To facilitate the variational formulation, we now define
the following functional forms: ∀w�Y, v�Y, V�L2, �g

�H0
1�R�,

a0�w,v;	� = �
�

	 � w � v�, �9�

a1�w,v;m�� =
1

2m1
��

�

�w

�x1

�v�

�x1
+

1

2m2
��

�

�w

�x2

�v�

�x2
, �10�

a2�w,v;V� = �
�

wVv�, �11�

a3�w,v� = �
�

wv�, �12�

c�w,v;�g� =
1

2m1
��

�g

�gw�
�g

�gv�, �13�

b�v;�g� =
1

2m1
��

�g

�gv�. �14�

The abstract formulation is then as follows: given E�R,
find ��Y that satisfies

a1��,v;m�� + a2��,v;Veff� − Ea3��,v�

− 
g=S,D


m=1

Ng

ikm
g c��,v;�m

g � + 
g=S,D


m=Ng+1

�

km
g c��,v;�m

g �

= − 
g=S,D


m=1

Ng

i2am
g km

g b�v;�m
g �, ∀ v � Y . �15�

For Eq. �5�, the weak formulation is as follows: given
n��� the solution ��H1��� is given by

�
�/�0

� � � � v� + �
�0

� � VG � v� + �
�

n���,n���…v�

= �
�

NDv�, ∀ v � Y ,

where �0 is the boundary in contact with gate electrode, and
n�(� ,n���)=n3Df1/2(

�−Fn�n����
T ). We have imposed the fol-

lowing boundary conditions:

���0
= 0, and � d�

dx1
�

�S��D

= 0.

Let f�v ;V�=��Vv�, and h�v ;V�=��0
��V�v�. Then, the ab-

stract formulation is as follows: given n���, the solution
��Y is given by
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FIG. 2. �Color online� 1 and 2 for three different values of x1 based on FE approximation for VD=0.015.
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a0��,v;�� + f�v;n�„�,n���…� = f�v;ND� − h�v;VG� ,

�16�

∀v � Y .

For the current problem where we have assumed a two-
dimensional electron gas, the charge density n is given by6

n��� = 
g=S,D


m=1

Ng �m3
�T

2�3�
0

�

f−1/2�Ef ,g − E�k�
T

�

���E�k�,am

g ��2dk , �17�

and this is summed over the three different configurations of
m�. In Eq. �17�, Ef ,S and Ef ,D are the Fermi levels at the
source and drain, which we assume to be zero at zero bias. In
addition, we assume quadratic band structure where E�k�
=Emin+ �k�2

2m� and Emin is the lowest energy occupied by the
electrons. Finally, the current intensity I is given by

I = �
0

b

j1�x1,x2;��dx2, �18�

where j1, the current density in the x1 direction, is defined as

j1��� = 
g=S,D


m=1

Ng

1

m1
�
�m3

�T

2�3


�
0

�

Im��̄�E�k�,am
g �

���E�k�,am
g �

�x1
�


f−1/2�Ef ,g − E�k�
T

�dk . �19�

Numerical approximation of Eqs. �15� and �16� based on,
say, finite element method, can however be computationally
very expensive since Eq. �15� must be solved many times in
a single iteration in order to numerically determine the den-
sity n. In particular, suppose we substitute the unbounded
upper limit in Eq. �17� by kmax=�2m1

�Emax and subdivide the
interval �0,kmax� into nk intervals. We then use Gauss
quadrature formulation within each interval to arrive at the
following approximation of n:

n��� ��m3
�T

2�3 
g=S,D


m=1

Ng


i=1

nk


q=1

Q

f−1/2�Ef ,g − E�kq
i �

T
�


���E�kq
i �;am

g ��2wq, �20�

where Ng is the number of modes considered at �g; am�
g� =1 if

m�=m and g�=g, and 0 otherwise; kq
i are the quadrature

points in interval i; wq is the quadrature weight; and Q is the
number of quadrature points used per interval. Then, in each
iteration, the maximum number of times we must solve Eq.
�15� is �NS+ND�nkQ. This can be somewhat smaller by ex-
cluding E for which f−1/2��Ef ,g−E�k�� /T� is negligibly small.

B. Subband decomposition approach

The subband decomposition method is first described in
Refs. 5 and 10. Assuming that the wave function is bounded
in the x2 direction, we can write Y as X1
X2 where X1

=H1��1
�0,a�� and X2=H0
1��2
�0,b��. Then, we can ex-

press ��Y as

��x;E� = 
i=1

�

�i�x1;E�i�x2;x1�, �i�x1;E� � X1, �21�

i�x2;x1� � X2.

Here, i�· ;�
x1��X2, i=1, . . . ,� are solutions to the fol-
lowing eigenvalue problem:

ã1�i���,v;m2
�� + ã2�i���,v;Veff����

= �i���ã3�i���,v�, 1 � i � �, ∀ v � X2,

�22�

ã3�i���, j���� = �ij, 1 � i, j � � , �23�

where Veff���=Veff�x2 ;�
x1�, and

ã1�w,v;	� = �
�2

1

2	
� w � v, ã2�w,v;t�

= �
�2

wtv, ã3�w,v� = �
�2

wv , �24�

for w�X2, v�X2 and t�L2��2�.
Substituting Eq. �21� into Eq. �15�, we obtain a one-

dimensional problem for �i�E�:


i=1

�
1

2m1
���

�1

d�i�E�
dx1

dt

dx1
ã3�i�x1�, j�x1�� + �

�1

d�i�E�
dx1

t�x1�ã3�i�x1�,
� j

�x1
�x1�� + �

�1
�i�x1;E�

dt�x1�
dx1

ã3� �i

�x1
�x1�, j�x1��

+ �
�1

�i�x1;E�t�x1�ã3� �i

�x1
�x1�,

� j

�x1
�x1��� + �

�1
��i�x1� − E��i�x1;E�t�x1��ij − 

g=S,D

m=1

Ng

ikm
g �i�xg�t�xg�

2m1
� �mi�mj

+ 
g=S,D


m=Ng+1

�

km
g �i�xg�t�xg�

2m1
� �mi�mj = − 

g=S,D

m=1

Ng

i2am
g km

g t�xg�
2m1

� �mj, ∀ t � X1, 1 � j � � . �25�
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This is simply the weak form for the following one-
dimensional Schrödinger equation:10

−
d

dx1
� 1

2m1
�

d

dx1
�i� − 

j=1

�
aij�x1�

m1
�

d

dx1
� j

− 
j=1

� �bij�x1�
2m1

� − �i�ij + E�ij�� j = 0, �26�

for i=1, . . . ,� with the appropriate open boundary
condition; aij�x1�=��2

i�x1��� j�x1� /�x1� and bij�x1�
=��2

i�x1���2 j�x1� /�x1
2�. It is further found that only finite

number of i is needed, which we denote as ne. If these ne
i�x1� are known, this one-dimensional problem can be
solved very efficiently.

In solving Eq. �25�, we need to determine �i /�� as well.
Let �i /���X2. Then, by taking the derivative of Eqs. �22�
and �23� with respect to �, we obtain

ã1� �i

��
�· ;��,v;m2

�� + ã2� �i

��
�· ;��,v;Veff�· ;���

− �i���ã3� �i

��
�· ;��,v�

= − ã2�i�· ;��,v;
�Veff�· ;��

��
� +

d�i���
d�

ã3�i�· ;��,v� ,

1 � i � �, ∀ v � X2, �27�

ã3� �i

��
�· ;��,i�· ;��� = 0. �28�

In addition, by letting v=i and invoking Eq. �22�, we have

ã1� �i

��
�· ;��,i;m2

�� + ã2� �i

��
�· ;��,i;Veff�· ;���

− �i���ã3� �i

��
�· ;��,i� = 0, 1 � i � � , �29�

since ã1, ã2 and ã3 are symmetric functionals, and �i /��
�X2. Thus, by substituting v=i into Eq. �27�, we obtain

d�i���
d�

= ã2�i�· ;��,i�· ;��;
�Veff�· ;��

��
� , �30�

since ã3�i ,i�=1. Finally, by substituting Eq. �30� into Eq.
�27�, we can solve for �i /��. At present �Veff /�� is com-
puted using a difference formula. In Appendix C, we de-
scribe a formulation that is more consistent with the finite
element approximation space of �; it however leads to a
higher computational cost. We also note that since Vb does
not depend on x1, �Veff /��=−�� /��.

The subband decomposition method can now be de-
scribed as follows. Each fixed-point iteration described in
Sec. II involves the following three parts: �i� the determina-
tion of the subbands i�x2 ;x1�, 1� i�ne for finite points in
�1, �ii� the determination of n��� by solving Eq. �25� for
�NS+ND�nEQ different combination of E and am

g , and �iii� the
determination of ���� by solving Eq. �16� given n���. In

Ref. 10 finite element method is used to approximate the
solutions at all stages of the algorithm. It is hoped that the
computational overhead incurred in part �i� will significantly
reduce the computational cost of solving the open
Schrödinger equation needed to determine the electron den-
sity. However, part �i� can be computationally expensive, es-
pecially if very fine mesh is needed to resolve the strong
confinement of the electrons in the x2 direction or when Eq.
�22� must be solved at large number of points if finer mesh is
needed in the x1 direction. Our goal is to speed up the deter-
mination of i for any given x1 through the reduced basis
method.

III. REDUCED BASIS METHOD

Consider a case where ne=1. Let �
x1 and D
�1.
Then, a finite element approximation of Eq. �22� entails rep-
resenting 1��� by a linear combination of the finite element
basis functions in a finite element approximation space,
X2,N�X2, of dimension N–1��� is an arbitrary member of
X2,N. However, 1��� can be localized to a much lower
lower-dimensional manifold M= �1��� ,��X1� residing in
X2. This manifold M can be visualized as a one-dimensional
filament that winds through X2. Presuming that M is suffi-
ciently smooth, we can then represent 1��� by elements in
span �M�. This smoothness behavior is evident in Fig. 2 for
1 and 2. The reduced basis method will explicitly exploit
this computational opportunity.

This section is organized as follows. We first define the
reduced basis approximation spaces that we use to approxi-
mate i���, 1� i�ne. This is followed by a detailed descrip-
tion of the offline-online computational decomposition
strategy—the procedure by which we obtain our computa-
tional speedup. We then describe the a posteriori error esti-
mation procedure; this allows us to determine the approxi-
mate accuracy of the reduced basis approximation to i���
with marginal additional computational cost. This error esti-
mation procedure will also be used in the construction of the
approximation spaces based on the adaptive greedy sampling
procedure described next. We conclude this section with a
summary of the steps involved in an implementation of the
reduced basis method and a description on how reduced ba-
sis method can be efficiently integrated within the subband
decomposition method. For notational convenience, we have
i���=i�x2 ;��, ����=��x2 ;��, di���=�i�x2 ;�� /�� and
d����=���x2 ;�� /��.

A. Approximation spaces

We first introduce nested sample sets SN= ��1 , . . . ,�Ns
�,

1�Ns�Ns,max and define the associated nested reduced ba-
sis spaces as

WN = span�i�� j�,1 � i � ne,1 � j � Ns�, 1 � Ns � Ns,max,

=span��n,1 � n � N 
 Nsne�, 1 � Ns � Ns,max, �31�

where 1�� j� , . . . ,ne
�� j� are the solutions of Eq. �22� at �

=� j, and �n are basis functions obtained after i�� j�, 1� i
�ne, and 1� j�Ns are orthonormalized. These reduced ba-
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sis spaces are constructed based on an adaptive greedy
algorithm23,26 which will be described in Sec. III E, after
several components of the algorithm have first been ex-
plained in the preceding sections.

We also construct collateral approximation spaces for
���� and d���� based on the empirical interpolation
procedure.27,28,31 For p=���� and d����, we construct
nested sample sets SM

p 
��1
p , . . . ,�M

p �, 1�M �Mmax
p , nested

approximation spaces WM
p 
span�q1

p , . . . ,qM
p �, 1�M �Mmax

p ,
and nested interpolation points TM

p 
�t1
p , . . . , tM

p �, 1�M
�Mmax

p .
In Eq. �31�, we have assumed i�� j� are known exactly. In

practice, however, i�� j� must be determined through some
form of “truth” approximation—here, we use the finite ele-
ment method with P1 elements. We build our reduced basis
approximation on and measure the error in the reduced basis
approximation relative to this truth approximation. Note that
since reduced basis approximation is built upon this truth
approximation, it cannot perform better than this truth ap-
proximation. Thus, the number of elements used to obtain
our truth approximation, N, must usually be large. Similarly,
the WM

� and WM
d� are constructed from a truth approximation

of � and d�, here based on finite element method utilizing
Q2 elements.

B. Approximation

Our reduced basis approximation to Eqs. �22� and �23� is
then given by the following: find �i,N,M��� ,�i,N,M�����YN

�WN
R�, 1� i�ne such that

ã1�i,N,M���,v;m2
�� + ã2�i,N,M���,v;Veff,M����

= �i,N,M���ã3�i,N,M���,v� ,

1 � i � ne, ∀ v � WN, �32�

ã3�i,N,M���, j,N,M���� = �ij, 1 � i, j � ne, �33�

where Veff,M =Vb+�M.
Similarly, our reduced basis approximation to Eqs. �27�

and �28� is given by the following: find di,N,M����WN, 1
� i�ne such that

ã1�di,N,M���,v;m2
�� + ã2�di,N,M���,v;Veff,M�· ;���

− �i,N,M���ã3�di,N,M���,v�

= ã2�i,N,M���,v;d�M���� +
d�i,N,M���

d�
ã3�i,N,M���,v� ,

1 � i � ne, ∀ v � WN, �34�

ã3�di,N,M���,i,N,M���� = 0, �35�

where

d�i,N,M���
d�

= ã2�i,N,M���,i,N,M���;d�M���� . �36�

It is not immediately clear that di,N,M��� can be sufficiently
approximated in WN. In Sec. IV, we will examine if it is

necessary to replace WN by an enlarged space WN
d given by

WN
d = span�i�� j�, . . . ,ne

�� j�,di�� j�, . . . ,dne
�� j�,1 � j

� Ns� ,

=span��n,1 � n � N 
 2Nsne� . �37�

C. Offline-online decomposition

We first expand our reduced basis approximation as

n,N,M��� = 
j=1

N

n,N,Mj���� j, 1 � n � ne, �38�

where � j �WN, and n,N,Mj����R. We then expand our em-
pirical interpolation approximation for ��· ;�� as

�M�· ;�� = 
m=1

M�

�M,m���qm
��·� , �39�

where �M����RM is given by


k=1

M�

Bm,k
M,��Mk��� = ��tm

� ;��, 1 � m � M�, �40�

and BM,��RM�

RM�

is given by Bm,k
M,�=qm

��tk
��, 1�m ,k

�M�. We note that �qm
� ,1�m�M�� is preconstructed based

on the empirical interpolation method. Inserting the above
representations Eqs. �38� and �39� into Eqs. �32� and �33�, we
obtain the following discrete equations:


j=1

N �Ai,j
N + �

m=1

M�

CN,�,m�Mm�����n,N,Mj���

= �n,N,M���
j=1

N

Mi,j
N n,N,Mj���, 1 � i � N, 1 � n � ne,

�41�


i=1

N


j=1

N

n,N,Mi���Mi,j
N m,N,Mj��� = �nm, 1 � n,m � ne,

�42�

where AN�RN
N, MN�RN
N, CN,�,m�RN
N, 1�m�M�

are given by Ai,j
N = ã1�� j ,�i ;m2

��+ ã2�� j ,�i ;Vb�, Mi,j
N = ã3�� j ,�i�,

and Ci,j
N,�,m= ã2�� j ,�i ;qm

�� for 1� i , j�N.
Similarly, for Eqs. �34� and �35�, we expand

dn,N,M��� = 
j=1

N

dn,N,Mj���� j , �43�

where � j �WN, and dn,N,Mj����R, and

d�M�· ;�� = 
m=1

Md�

�M,m���qm
d��·� , �44�

where �M����RMd�
is given by
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k=1

Md�

Bm,k
M,d��Mk��� = d��tm

d�;��, 1 � m � Md�, �45�

and BM,d��RMd�

RMd�

is given by Bm,k
M,d�=qm

d��tk
d��, 1

�m ,k�Md�. Inserting the above representations Eqs. �38�,
�43�, and �44� into Eqs. �34� and �35�, we obtain the follow-
ing discrete equations:


j=1

N �Ai,j
N + �

m=1

M�

CN,�,m�Mm����
− �n,N,M���Mi,j

N�dn,N,Mj���

= 
j=1

N � d�i,N,M���
d�

Mi,j
N

− �
m=1

Md�

CN,d�,m�Mm�����n,N,Mj���, 1 � i � N ,

�46�


i=1

N


j=1

N

dn,N,Mi���Mi,j
N n,N,Mj��� = 0, �47�

where CN,d�,m�RN
N, 1�m�Md� is given by Ci,j
N,d�,m

= ã2�� j ,�i ;qm
d��, 1� i , j�N.

Finally, the linear functional ã3 is simply approximated by

ã3�wn���,vm���� � ã3�wn,N,M���,vm,N,M����

= 
i=1

N


j=1

N

Mi,j
N wn,N,Mi���vm,N,Mj��� .

�48�

The computational decomposition is then clear. At the be-
ginning of each inner iteration, we generate nested reduced
basis spaces WN, 1�N�Nmax, nested approximation spaces
WM

� , 1�M �Mmax
� and WM

d�, 1�M �Mmax
d� , and the associ-

ated nested sets of interpolation points TM
� and TM

d�. For de-
termining i,N,M, 1� i�ne, we form and store AN ,MN ,BM,�,
CN,�,m, 1�m�Mmax

� and CN,d�,m, 1�m�Mmax
d� . This is

equivalent to the offline stage in a more typical reduced basis
formulation. The computational cost is �to leading order�
O�NN•+neNN†+M2N2N�, where • and † depend on the
complexity of the eigenvalue solver and linear solver used,
M =max�M� ,Md��, and N is the dimension of our “truth”
approximation.

In the online stage—during construction of discrete ma-
trices for Eq. �25�—we solve Eqs. �41� and �42� for
n,N,Mj���, 1� j�N, 1�n�ne, and Eqs. �46� and �47� for
dn,N,Mj��� ,1� j�Ndn, 1�n�ne. Finally, we evaluate Eq.
�48� in order to determine the ã3 terms in Eq. �25�. The
computational cost for each � is then O��neN�3+neN

3

+MN2�, which is then independent of N.

D. a posteriori error estimation

The a posteriori error estimation procedure plays an im-
portant role in reduced basis method. An inexpensive esti-
mate of the approximation error allows us to decide whether
a reduced basis solution is sufficiently accurate for the pur-
pose at hand. In addition, in the adaptive greedy algorithm to
be outlined in Sec. III E, the error estimator serves as an
efficient guide in the construction of the reduced basis
sample set. The derivation of the a posteriori error estimator
follows.29 For i=1, . . . ,ne, we define the residual as

Ri�v;�� = ã�i,N,M���,v;Veff���� − �i,N,M���ã3�i,N,M���,v� ,

�49�

for ∀v�Y where ã�w ,v ;Veff����= ã1�w ,v�
+ ã2�w ,v ;Veff����. We also define a reconstructed error êi in
Y, such that

â�êi,v� = Ri�v;��, ∀ v � Y , �50�

where

â�w,v� = ã1�w,v;m2
�� + ã2�w,v;Vb�

+ �� + max
��D,x2��2

��x2;���ã3�w,v� , �51�

� = � min
��D,x2��2

��x2;��� , �52�

	Ri�· ;��	 
 sup
v�Y

Ri�v;��
â�v,v�1/2 = â�êi, êi�1/2, �53�

and 	 · 	= â�· , ·�1/2.
Proposition 1. Assume our reduced basis approximation

is convergent in the sense that

�i,N,M��� → �i���, 1 � i � ne, as N → � . �54�

Then, for large N and i=1, . . . ,ne,

��i,N,M��� − �i���
�i��� + �

� �
	Ri�· ;��	

��i,N,M��� + ��1/2 , �55�

In addition, for �i,N,M��� of multiplicity one and associ-
ated uN,i���, we have

	ui,N,M��� − ui���	 �
	Ri�· ;��	

di
, �56�

and

��i,N,M��� − �i���� �
	Ri�· ;��	2

di
2 , �57�

where di=min
j�i

�
� j,N,M���−�i,N,M���

� j,N,M���+� �.

Proof. The proof is given in Appendix B. �
We note that Eq. �57� will in general be a better bound

due to the 	Ri	2 term. Numerical experiments also indicate
this is so. We thus define our error estimators based on Eqs.
�56� and �57�:
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�N,M
� ��� = max

1�i�ne

1

di
2

	Ri�· ;��	2

��i,N,M����
, �58�

�N,M
 ��� = max

1�i�ne

1

di

	Ri�· ;��	
	i,N,M���	

. �59�

We can construct efficient offline-online computational
strategies for the evaluation of our error estimators �Eqs. �58�
and �59��. From Eq. �51� and our reduced basis approxima-
tion, we have

â�êi,v� = ã1�i,N,M���,v;m2
�� + ã2�i,N,M���,v;Vb�

+ 
m=1

M�

�m���ã2�i,N,M���,v;qm
��

+ �̄M+1
� ã2�i,N,M,v;qM�+1

� �

− �i,N,M���ã3�i,N,M���,v�, v � Y, 1 � i � ne,

�60�

where �̄M
� =max��D �̂M

� ��� and �̂M
� ���= ���tM�+1

� ;��

−�M�tM�+1
� ;���. It then follows from linear superposition

that

êi��� = 
n=1

N

i,N,Mn����pn
1 + pn

2 + 
m=1

M�

�mpn
2+m + �̄M

� pn
M�+3�

− �i,N,M���
n=1

N

i,N,Mn���pn
0, �61�

where

â�pn
1,v� = a1��n,v;m2

��, v � Y, 1 � n � N ,

â�pn
2,v� = a2��n,v;Vb�, v � Y, 1 � n � N ,

â�pn
2+m,v� = a2��n,v;qm

��, v � Y ,

1 � n � N, 1 � m � M� + 1,

â�pn
0,v� = a3��n,v�, v � Y, 1 � n � N .

Then, 	Ri�· ;��	 is given by

	Ri�· ;��	2 = â�êi, êi� = 
k=1

3+M�


k�=0

3+M�


n=1

N


n�=1

N

�k����k����i,N,Mn���i,N,Mn����Ân,n�
k,k� + 

n=1

N


n�=1

N

�i,N,M
2 ���i,N,Mn���ui,N,Mn����Ân,n�

0,0

+ 
n=1

N


n�=1

N


k=1

3+M�

uN,in����N,i����k���Ân,n�
q,0 , �62�

where Âk,k��RN
N are given by Ân,n�
k,k� = â�pn

k , pn�
k��, 0�k ,k�

�M�+3, 1�n ,n��N, �1=�2=1, �2+m=�m, 1�m�M�,
and �M�+3= �̄M

� . We now see that the dual norm of the re-
sidual is the sum of products of parameter-dependent func-
tions and parameter-independent functionals. The offline-
online decomposition is now clear.

In the offline stage, we compute pn
k, 0�k�M�+3, 1

�n�N, based on Eq. �60� at the cost of O��4+M��NN•�,
where the • denotes computational complexity of the linear

solver used to obtain pn
k. We then evaluate Âk,k� at the cost of

O��4+M��N2N2�. We store the matrices Âk,k� at a total cost
of �4+M��N2. In the online stage, we simply evaluate the
sum �Eq. �61� for a given i,N,M��� and �i,N,M���, 1� i�ne.
The operation count is only O�ne�M��2N2�. The online com-
plexity is thus independent of N. Unless M� is large, the
online cost to compute the error estimator is then a fraction
of the cost required to obtain i,N,M��� and �i,N,M���.

E. Construction of reduced basis spaces

We now have all the components necessary to describe
the greedy adaptive sampling procedure used to construct the

sample sets SN. A well-defined sample set is important as it
will result in a rapidly convergent reduced basis approxima-
tion, and a well-conditioned reduced basis discrete system.

We first assume that we are given a sample SN and hence
a reduced basis space WN, and the associated reduced basis
approximation �procedure to determine� i,N,M��� and
�i,N,M���, ∀��D. We remind that N=Nsne. Then, for a suit-
ably fine grid �� over the parameter space D, we determine
�Ns+1

� =arg max����
�N,M

� ���. Then we append �Ns+1
� to SN

to form SN+ne
and hence WN+ne

. The procedure is repeated
until �max=�N,M

� ��Ns+1
� � is below �tol, a tolerance we desire.

This tolerance �tol determines the size of Nmax. Of course, we
could use some other error measures instead of �N,M

� ��� de-
fined in Eq. �58�. However, the use of a posteriori error
estimators as described in Sec. III D avoids determination of
truth solution for all ����, resulting in an efficient proce-
dure. Due to its adaptive nature, this sampling procedure is
relatively insensitive to the starting sample set, especially
when the starting sample set Sne

consists of only a single �
point. If we start with a poor � point, the algorithm will next
choose a good sample point based on our sampling criteria.
This implies the effect of a poor starting � point amounts to
increasing Ns by 1.

GEORGE S. H. PAU PHYSICAL REVIEW B 78, 155425 �2008�

155425-8



F. Summary

The steps needed to implement the reduced basis method
can be summarized as follows: �1� Construct approximation
spaces WM

� and WM
d� for � and d� based on empirical inter-

polation approximation procedure. �2� Construct reduced ba-
sis approximation spaces WN for i based on the adaptive
greedy sampling procedure as described in Sec. III E. We
need to construct two separate spaces �and approximations�
for m2

�=mt and m2
�=ml. During this step, we will have also

constructed the relevant matrices needed to determine
i,N,M��� and di,N,M���, 1� i�ne as described in Sec. III C,
and �N,M

� ���, as described in Sec. III D. �3� Given a set of �,
we determine i,N,M���, 1� i�ne from Eqs. �41� and �42�
and di,N,M��� from Eqs. �46� and �47�. We can determine
the error estimators �N,M

� ��� and �N,M
 ��� based on Eqs.

�58�, �59�, and �62�.
We can now combine the reduced basis method and the

subband decomposition method. Within each fixed-point it-
eration, part �i� of the solution method described in Sec. II B
will now consist of �a� offline stage—steps 1 and 2—in
which we construct the reduced basis machinery required to
approximate i�x2 ;x1� and �i�x1�, and their derivatives to a
required level of accuracy, and �b� online stage—step 3—in
which we approximate i�x2 ;x1� and �i�x1� for finite points
on �1 by i,N,M�x2 ;x1� and �i,N,M�x1�. Note that steps 1 and 2
are computationally intensive and we would like to avoid
implementing the offline stage at each fixed-point iteration.
This is indeed possible. Armed with the a posteriori error
estimators, we only need to reconstruct the reduced basis
machinery when the estimated errors of the solutions based
on WN of the previous iteration are above the tolerance we
desired. This significantly reduces the cost of reduced basis
method by limiting the number of times we need to perform
the expensive offline computation. The procedure is summa-
rized in Fig. 3.

There are several variations to the above procedure. For
example, a more frequent reconstruction may lead to smaller
N, thus reducing the cost of “online” calculation. Thus, one
could impose compulsory reconstruction of WN at fixed in-
tervals; at present we do not impose this as N required is
generally small. In addition, we do not expect N to change
drastically since � only changes slightly between iterations.
We could also reduce the offline computational cost by re-
constructing the WN based on existing SN. While this re-
moves the cost associated with greedy sampling procedure,
we are less certain that the approximation space will be op-
timal and the solutions within the tolerance we desired.

IV. NUMERICAL RESULTS

We consider a domain �= �0,580�
 �0,100�, which is
divided into five subdomains detailed in Table I. The relative
dielectric constant, �r, and donor concentration, ND, in each
subdomain are also listed in Table I. The source voltage VS
and the gate voltage VG are maintained at 0 and 0.015, re-
spectively; the drain voltage VD is allowed to vary between 0
and 0.015, and the applied temperature is 9.5
10−4 �ap-
proximately 300 K�. We assume ne=8 gives a sufficiently
accurate approximation. To evaluate Eq. �20�, we use Emax

=20 T �since f1/2�−Emax /T��10−8�, nk=120 and Q=3.
We will first look at the convergence properties of the

empirical interpolation approximation for � and �� /�x1 and
the reduced basis approximation for i�x1�, 1� i�ne. We
then compare effects of using reduced basis method in part
�i� on accuracy and efficiency of subband decomposition
method. In our fixed-point iterative scheme, the convergence
criteria are given by 	�k−�k−1	L2

/ 	�k	L2
�10−4. All results

are for a discretization where the grid size in the x1 direction,
h1, is 5 and the grid size in the x2 direction, h2, is 2.

Determine ξi,N,M , its derivative, and ∆λ
N,M

Converged.

∆
λ N

,M
>

to
le

ra
nc

e

An initial guess, n0

Determine φ0(n0)

Determine φk(nk)

Determine ϕ(E), ψ(E), and nk(ψ)

for ξi and its derivative

Construct RB spaces and matrices

‖φ
k
−

φ
k
−

1
‖ L

2
/‖

φ
k
‖ L

2
>

to
le

ra
nc

e

FIG. 3. Subband decomposition procedure with reduced basis
approximation in part �i�.

TABLE I. Definition of �1−�5, and �r and ND used in the
model problem; �0=1 /4�.

Extent �r=� /�0 ND

�1 �200,380�
 �20,80� 11.7 0

�2 �0,200�
 �20,80� 11.7 2.96
10−5

�3 �380,580�
 �20,80� 11.7 2.96
10−5

�4 �0,580�
 �80,100� 3.9 0

�5 �0,580�
 �0,20� 3.9 0
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A. Empirical interpolation approximation of � and �� Õ��

We first examine the approximation of � and �� /��
based on the empirical interpolation method. Figure 4 shows
the solutions of � and �� /�� at convergence for the case
VD=0.015. We note that the variation of ��x2 ;�� with re-
spect to � is nontrivial. The empirical interpolation errors of
�M and ��M /��, denoted by �̄M

� and �̄M
d�, respectively, are

shown in Fig. 5. The figure shows that we have a rapidly
converging approximation—with M�=21 and Md�=23, the
errors �̄M

� and �̄M
d� are less than 10−8.

B. Convergence of the reduced basis approximation

For our convergence analysis, the test sample �� is given
by the number of grid points in the x1 direction—for the
current discretization, the size of �� is 117. We define the
following error measures:

�N,M
� = max

����

�N,M
� ���, �N,M

 = max
����

�N,M
 ��� , �63�

where

�

���

���

���

�

��

���

�����

������

�����

������

�����

������

x1x2

−
φ
N

�

���

���

���

�

��

���

���

��

�

�

� ��
��

x1x2

−∂
φ
N

/
∂
µ

(b)(a)

FIG. 4. �Color online� �N�left� and ��N /�� �right� for VD=0.015. The superscript N indicates that it is a finite element approximation
of �.

� � �� �� �� ��
��

���
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���
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� � �� �� �� ��
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��
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FIG. 5. �Color online� �M versus M for �M �left� and
��M

�� �right�.

GEORGE S. H. PAU PHYSICAL REVIEW B 78, 155425 �2008�

155425-10



�N,M
� ��� = max

1�i�ne

��i,N,M��� − �i����
��i����

, �64�

�N
 ��� = max

1�i�ne

	i,N,M��� − i���	
	i���	

. �65�

We also define the effectivity measures as

�N,M
� ��� =

�N,M
� ���

�N,M
� ���

, �N,M
 ��� =

�N,M
 ���

�N,M
 ���

. �66�

Table II shows that our reduced basis approximation is
rapidly convergent. For both m2

�=ml and mt, we require only
24 basis functions to reduce the relative errors �N,M

� to below
10−8 and �N,M

 to below 10−4 for the case where VD=0.015. In
addition, the effectivity measures are small, indicating that
our error estimators are good surrogates to the actual errors.
Although �N,M

� and �N,M
 increase with N, �N,M

� and �N,M


also decrease—thus the absolute difference between the ac-
tual errors and the error estimators is small.

We now look at the reduced basis errors in di,N,M�·�,
d�i,N,M�·�, 1� i�ne and ã3�di,N,M , j,N,M�, 1� i , j , �ne. We
define

�N,M
d� = max

����

max
1�i�ne

�d�i,N,M��� − d�i����
�d�i����

, �67�

�N,M
d = max

����

max
1�i�ne

	di,N,M��� − di���	
	di���	

, �68�

�N,M
ã3 = max

����

max
1�i,j�ne



�ã3�di,N,M���, j,N,M���� − ã3�di���, j�����

�ã3�di���, j�����
.

�69�

From Table III, we again see the rapid convergence in the
errors defined by Eqs. �67�–�69�. In particular, the error in
ã3�· , ·�, which determines the effects of reduced basis ap-
proximation on the subband decomposition method, de-
creases rapidly with N. For a relative error of 10−5, N=24 is

sufficient for both m2
�=ml and mt. Since the magnitude of

ã3�di��� , j���� is of order 10−4, the absolute error in the
approximation is actually very small.

As mentioned in Sec. III B, we now examine the approxi-
mation of di��� in WN

d given by Eq. �37�. We note that the
solutions �i,N,M ,�i,N,M� must also be determined in WN

d 
R.
From Table IV, we indeed see a faster convergence in the
errors with respect to Ns. However, the total number of basis,
N, also increases with Ns at a rate double that of WN. As
such, for higher accuracy, WN

d can indeed be a better approxi-
mation space although for the current purpose, WN appears to
be sufficient and leads to a smaller N.

C. Effects of reduced basis approach on efficiency of subband
decomposition method

We denote the methods where we approximate part �i� of
the subband decomposition method by finite element method
and reduced basis method as SDM/FEM and SDM/RBM,
respectively; parts �ii� and �iii� are approximated by finite
element method for both approaches. The finite element ap-
proximation of part �i� is implemented using P1 elements
with N=51 while the reduced basis approximation uses the
accuracy criteria given by �N,M

� �10−7. To compare the ac-
curacies of the two approaches, we compare the solutions

TABLE III. Convergence of the reduced basis approximation of
d�i,N,M and di,N,M, 1� i�ne for VD=0.015.

Ns N �N,M
d� �N,M

d �N,M
ã3

m2
�=ml

1 8 3.6911E-2 9.4697E-1 6.8170E+0

2 16 1.9097E-5 7.4886E-2 1.4036E-2

3 24 9.4836E-8 1.6339E-3 8.8105E-6

m2
�=mt

1 8 4.2302E-2 8.4431E-1 4.0849E+0

3 16 5.2726E-4 2.2922E-1 1.2190E-2

3 24 4.1623E-8 3.0825E-3 5.6612E-6

TABLE II. Convergence of the reduced basis approximation for VD=0.015.

Ns N �N,M
� �N,M


max
����

�N,M
� max

����

�N,M
 max

����

�N,M
�

max
����

�N,M


m2
�=ml

1 8 6.12E-4 3.28E-2 4.70E-3 5.18E-2 1.03E+2 6.15E+0

2 16 4.60E-6 3.50E-4 6.30E-5 1.17E-3 4.93E+1 6.60E+0

1 24 2.01E-10 1.10E-5 3.17E-9 4.15E-5 4.26E+1 4.14E+1

m2
�=mt

1 8 4.15E-4 3.35E-2 6.22E-3 7.10E-2 4.56E+1 5.39E+0

2 16 5.76E-7 8.45E-4 2.40E-5 4.53E-3 6.48E+1 7.49E+0

3 24 1.87E-10 1.29E-5 6.95E-9 7.39E-5 5.84E+1 7.40E+0
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obtained to a full finite element implementation; i.e., Eq. �15�
is directly approximated by a finite element method utilizing
Q2 elements. We denote the density obtained with this full
finite element implementation by nt.

From Table V, we first note that the accuracies in �N

obtained by the two approaches are comparable—the relative
errors of �N�nN� and �N�nN,M� to �N�nt� are of the same
order of magnitude. Here, nN and nN,M are respectively the
densities computed based on the SDM/FEM and SDM/RBM
approaches. This implies that part �i� can be approximated by
the reduced basis method without any adverse effect on the
accuracy level of the subband decomposition method. More
remarkably, this is achieved with a factor-of-5 reduction in
the computational time spent in part �i�, which includes the
cost of constructing the relevant matrices for use in part �ii�.
We further note that the reduced basis approximation spaces
are only reconstructed once and twice for the whole duration
of the simulation.

However, due to the computational overhead in parts �ii�
and �iii�, the total computational savings achieved with the
SDM/RBM approach are more modest for the discretization
we have used—the reduction in the computational time is
less than a factor of 2. Part �iii� is particularly computation-
ally intensive as it involves solving a nonlinear PDE in a
two-dimensional domain. Nevertheless, we expect the reduc-
tion in total computational time to increase as we refine the
resolution in the x2 direction. Figure 6 shows how the total
computational time and computational time spent in part �i�
scale with respect to h2 where h2 is the mesh spacing in the
x2 direction; the reported time has been scaled with respect to
the total computational time of SDM/RBM at h2=4. With the
SDM/FEM approach, the computational time spent in part �i�
increases rapidly as h2 decreases while with the SDM/RBM
approach, we only see a marginal increase in the computa-
tional time. This marginal increase is due to the slight in-
crease in the computational cost of the offline stage; there

should be little or no increase in the computational cost of
the online stage. On the other hand, when we compare the
total computational time of the two approaches, the gain in
the computational savings as h2 decreases is less impressive.
We achieve a factor of 2 when h2=0.5. This is because as h2
decreases, the dimension of the nonlinear Poisson equation
we are solving in part �iii� also increases, leading to a rapid
increase in the computational cost of part �iii�. We note that
the computational time of part �ii� should remain unchanged,
as long as h1 remains the same. The above observation
strongly suggests that the reduced basis approach is particu-
larly suited for situations where computational cost of part �i�
dominates the total computational cost. For example, fine
resolution may be needed in the x2 direction due to strong
confinement of the electrons. In nanowires and nanotubes
where we have a two-dimensional confinement, the higher
dimension will also lead to larger mesh size, thus increasing
the computational cost of part �i�.

Finally, we look at a how the drain current per unit width
ID varies with drain voltage VD. Figure 7 shows that we have
a typical current-voltage relation for a MOSFET, where the
rate of increase in ID decreases as the applied voltage VD
increases. We further note that the SDM/RBM method gives
a comparable result to the SDM/FEM method.

V. CONCLUSION

We have described how reduced basis method can im-
prove the efficiency of the subband decomposition approach
to ballistic transport simulation in nanodevices. In particular,
the use of a posteriori error estimator and adaptive sampling
procedure leads to a very efficient solution procedure. Nu-
merical results based on a double-gate MOSFET show that
the computational cost is reduced by 50% for a reasonably
sized problem and depends very weakly on the mesh size in
the confined direction. We expect the computational savings
to increase in cases of 2D confinement, such as those en-
countered in nanowires.
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TABLE IV. Convergence of the reduced basis approximation of
d�i,N,M and di,N,M, 1� i�ne for VD=0.015 with WN

d . The results
are for m2

�=ml.

Ns N �N,M
d� �N,M

d �N,M
ã3

1 16 4.5909E-4 4.2958E-2 3.0776E-3

2 32 3.1253E-11 4.9611E-6 9.4168E-9

TABLE V. Comparison of the computational cost for the subband decomposition method and the reduced
basis method. Here Noffline is the number of times WN is reconstructed; kmax is the maximum number of
fixed-point iteration; nN is obtained from the SDM/FEM approach; nN,M is obtained from the SDM/RBM
approach; and nt is obtained from a full finite element approximation.

Case

SDM/FEM SDM/RBM

Time, s Time, s

Total part �i�
	�N�nN�−�N�nt�	L2

	�N�nt�	L2 Total part �i�
	�N�nN,M�−�N�nt�	L2

	�N�nt�	L2 Noffline kmax

VD=0 495 239 7.74E-4 302 45 8.19E-4 2 10

VD=0.015 417 216 8.48E-4 246 41 8.33E-4 1 9
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APPENDIX A: ATOMIC UNITS

Atomic units are used throughout this paper. Table VI lists
the conversion between atomic units and common units of
some relevant quantities.

APPENDIX B: PROOF OF PROPOSITION 1

We first note that the eigenvalues �i are of multiplicity
one but ã�v ,v ;Veff����= ã1�v ,v ;m2

��+ ã2�v ,v ;Veff���� is not
strictly positive for all ��D. To derive the bounds given by
Eqs. �55�–�57�, we need to first define a surrogate functional
form that will be positive for all ��D. For this purpose, we
define ã+�w ,v ;Veff����= ã�w ,v ;Veff����+�ã3�w ,v� and in-
troduce the following eigenvalue problem: for ��D, find
�i

+��� ,�i
+�����Y 
R, 1� i�ne such that

ã+�i
+���,v;Veff���� = �i

+���ã3�i
+���,v� , �B1�

∀v � Y, 1 � i � ne,

ã3�i
+���, j

+���� = �ij, 1 � i � j � nb. �B2�

It is clear that i
+���=i��� and �i

+=�i+�.
Proposition 2. Given â�w ,v� as defined in Eq. �51�, we

have

â�v,v� � ã+�v,v;Veff���� � ã3�v,v� � 0, �B3�

for all ��D.
Proof. We first prove the left inequality. Let

f�·�= max
��D,x2��2

��x2 ;��. By expanding ã+, we obtain

ã+�v,v;Veff���� = ã1�v,v;m2
�� + ã2�v,v;Vb� + ã2�v,v;�����

+ �ã3�v,v� � ã1�v,v;m2
�� + ã2�v,v;Vb�

+ ã2�v,v; f� + �ã3�v,v� , �B4�
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FIG. 6. �Color online� Comparison of �a� the total computational time and �b� the computational time for part �i�, for the subband
decomposition method and the reduced basis method with increasing mesh size. The time is scaled with respect to total time for the
SDM/RBM method at h2=4.
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since ã1�v ,v ;m2
���0; ã2�v ,v ;Vb��0 as Vb�0, ã3�v ,v�

�0, and ��0. Since the right-hand side of Eq. �B4� is
equivalent to â�v ,v�, the left inequality is proven.

To prove the right inequality, we first note that

ã�v,v;Veff���� � �1���ã3�v,v� ,

and �1���� min
x2��2

�Vb�x2�+��x2 ;���. Then,

ã+�v,v;Veff���� = ã�v,v;Veff����

+ � min
��D,x2��2

��x2;���ã3�v,v�

� �min
��D

�1��� + � min
��D,x2��2

��x2;����ã3�v,v�

� ã3�v,v� , �B5�

since minx2��2 Vb�x2�=0 and min��D �1���
+ �min��D,x2��2

��x2 ;����0. This concludes the proof for
Proposition 2.

Hypothesis 1. Assuming our reduced basis approximation
is convergent in the sense that

�i,N,M��� → �i���, 1 � i � ne, as N → � . �B6�

Then, for sufficiently large N,

i = arg min
1�j�N

��i,N,M��� − � j���
� j

+���
� . �B7�

The proof of Proposition 1 then utilizes Proposition 2 and
Hypothesis 1. The rest of the proof can be found in Ref. 29.

APPENDIX C: DERIVATIVE OF �

To solve Eq. �25�, we must evaluate �n /�x1; in Ref. 10,
n, �n /�x1 and ã3�· , ·� are evaluated at the nodes �i , j� of the
rectangular mesh, and interpolated to the quadrature points
when evaluating the functionals in Eq. �25�. In addition,
�n /�x1 are evaluated by a difference formula. In our ap-
proach, �n /�x1 are determined from Eq. �27�, and this in-
volves determining �� /�x1 at the nodes �i , j�. However, as
we have used Q2 elements to solve for �, its derivative is
discontinuous, and thus not defined at the nodes. So, we
compute the �� /�x1 based on a difference formula. We then
compute n, �n /�x1 and ã3�· , ·� at the nodes �i , j� of the
rectangular mesh, and interpolate to the quadrature points
when evaluating the functionals in Eq. �25�.

To avoid evaluating �� /�x1 at the nodes, we can choose
to compute �n /�x1 directly at the quadrature points used to
evaluate the functionals in Eq. �25�. The reduced basis ap-
proximation procedure is as follows: �1� Compute �� /�x1 at
�i+1 /2, j�, where i+1 /2 is the midpoint between i and i+1.
�2� Construct a magic point approximation for �� /�x1, and
the reduced basis machinery for �n /�x1. �3� Evaluate the
terms n,N,M, �n,N,M /�x1 and ã3 at the quadrature points. To
evaluate n,N,M and �n,N,M /�x1, values of �M and ��M /�x1 at
the magic points for a given quadrature point must first be
determined. For �M, these are obtained by the interpolation
of the Q2 elements. For ��M /�x1, since the gradient between
node �i , tM

d�� and �i+1, tM
d�� is a constant, the values at the

magic points for quadrature point falling between �i , tM
d�� and

�i+1, tM
d�� is given by the value at node �i+1 /2, tM

d��; tM
d� are

the magic points for ��M /�x1.
The above formulation should then be consistent with the

Q2 elements we use. It is however more expensive: the com-
putational cost of part �i� is increased by 66%. Determining
the accuracy of the two approaches is also tricky. A compari-
son to, say, a full finite element approximation may be nec-
essary although approximation error of subband decomposi-
tion method may dominate. In addition, the convergence
criteria used in the fixed-point iteration are not stringent, and
any difference between the two approaches may not be dis-
cernible.
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